Clockwerk - A 3D Printed, Three-Axis Tourbillon

Clockwerk - A 3D Printed, Three-Axis Tourbillon

thingiverse

'Clockwerk' is a wall hanging kinetic sculpture of a 3-axis tourbillon escapement, and is the world's first 3D printed multiaxis tourbillon. The mechanism is heavily inspired by Vianney Halter's wonderful "Deep Space Tourbillon" watch, but adapted for the scale and materials of 3D printing. See the final mechanism in action here. 3-axis tourbillons are beautiful to see in motion, but are some of the most expensive and rare watch components in the world. Watches containing them command prices in the hundreds of thousands USD, and have production volumes in the single digits. What better way to bring this mechanism to the masses than 3D printing? Now you can have watchmaking's rarest escapement hanging on your wall! Clockwerk is made of 99 parts: 34 printed parts, 8 ball bearings, 3 metal shafts, 2 barbell plates, 1 meter of fishing line, and 51 screws. The model shown here is printed such that each axis is an alternating color for ease of understanding the axis of rotation. The central blue part rotates within the white cage, which rotates within the blue U which rotates within the white bowl. Note that this is a bit tough to print and assemble, and is not a beginner project. 1.1 Revision Notes: Updated Part Orientations Added Bowl-Top_2 component. I incorrectly thought it was identical to the previous "Bowl" component, but it's actually slightly different. If you previously printed 2X of the bowl, you'll need to replace one of those with one of these (sorry). Print Settings Printer: FlashForge Creator Pro Rafts: Doesn't Matter Supports: No Resolution: 0.2mm Infill: 20% Notes: The 1.1 revision fixes part orientations, so hopefully there is no need to worry about that anymore. I used Simplify3D to create the paths. The nozzle on the FlashForge is 0.4mm, and the printer I used is completely stock. I specifically tried to make this work at lower resolutions on a hobby level FDM so that as many people as possible could have the chance to make it. Layers & Shells for All Parts:4 solid top & bottom layers. 2 shells. Full hexigon fill I recommend using Polymax PLA. This provides the strength and durability needed but is also amazing to print with (and it smells like sugar). I recommend using a dual extrusion printer even though these parts require no support. I use a single layer raft printed at 75% density of Polymaker Polysupport, on top of BuildTak build surface. This creates strong bed adhesion while still allowing the large flat pieces to be easily removed. The support layer is more brittle than the build layers, so if you whack a chisel against the support raft, the parts pop right off. The support layer can the be peeled off from the bed with an exacto if it's still stuck. I have adjusted all tolerances based on my printer, using these settings. It's possible parts may be too tight or too loose depending on your setup, and so I've included STP and solidworks models of the entire assembly. In this way you can edit any pieces to be tighter/looser as needed. I recommend printing parts slowly so you can test how they are all fitting, instead of printing everything at once and realizing nothing fits.I don't personally know any of the companies mentioned, I just find their products to be awesome Post-Printing The first thing I recommend is familiarizing yourself with the function of a swiss lever escapement. It's not necessary to fully understand a tourbillon, or a triple tourbillon, but it is important to understand the swiss lever escapement. This is the most difficult part to assemble, and I can't fully explain it myself. If you know what an impulse pin, pallet fork, escape wheel, screw balance, and hairspring are (and exactly how they work) then you can skip the next two videos, but otherwise I recommend watching the two escapement videos below until you fully understand them. It also helps to look at the assembly files I've included in CAD before assembly to get a better idea of how this all fits together in that area. Before printing, I also recommend watching the assembly video below. it's a bit long but gives you a good idea of the complexity of assembly. Ok, so now you understand lever escapements and roughly how this thing goes together? Awesome! Did you buy all the pieces listed below? Great! Now you've got to print your parts. I recommend printing them in stages as you assemble so you don't end up with lots of useless parts that are out of tolerance. If you find things aren't fitting as you go, you can adjust fit to future parts before you print them. First thing while printing is to make sure your parts are all printed flat. If they're not, go print them again until they are. Cool, now go back to the assembly video below and put it all together. If it's not working, try double checking that all the parts are assembled properly according to the STEP or Solidworks file I've uploaded. This photo shows the orientation parts should be printed in. Some parts are detailed further in the video. This 1949 Hamilton Watch Co video is great (on many levels, but important parts start at 3 minutes and end at about 12 minutes). There are a lot of things in there about barrel spring power which are unimportant here, but it's very important to understand the balance wheel/escape wheel/fork interaction. This video doesn't have the retro-chic of the previous one, but it highlights the important parts of the escapement very well. How I Designed This This was designed in Solidworks 2016, after many hours spent staring at videos and images of 3-axis tourbillons online. This is actually the first (and so far only) 3-axis tourbillon I've seen in person. Required Parts & Tools Parts List 3D Print Build Material - PolyMax PLA (any color will work) 3D Print Support Material - PolySupport (optional but recommended for easy removal of large flat parts) Buildtak (optional but recommended to prevent warping) 4mm Shaft (needs to be cut to 43mm and 16mm) 2mm Shaft (needs to be cut to 10mm) 4mm Bearing - Team Losi Mini T Bearings 2mm Bearing - Team Losi Micro T Bearings M2.5x8 Machine Screws 2.5 lb Barbell Plate 2X (or anything that weighs 5 lbs) Fishing Line (or any string that can hold 5 lbs) Bondic (or other precise UV hardening glue) All links are my Amazon Affiliate links. Pleas be nice and use them if you build this :) Tools List A 3D printer capable of printing 0.2mm layers, 0.4mm or smaller nozzle, and flat parts. I recommend this one. Something to cut stainless steel shafts (hacksaw, dremel, lathe, etc) Something to smooth the edges of the cut shaft (file, sandpaper) A small file for adjusting one of the 3D printed components A 1.5mm hex driver A hammer Patience; and prefereably a strong knowledge of 3D printing (to get flat parts), 3D modeling (if tolerances need to be adjusted for your printer), and some watchmaking (so you can get it ticking). On my printer, I can get parts that fit together nicely, but it won't work on everyone's printer. Some parts will need to be adjusted if prints are too tight or loose. I try to go over the major pain points in the video, but as a heads up, this is not a beginner project. Inspiration & Acknowledgements The initial desire to create this sculpture (and the design on which the mechanics are heavily based) is Vianney Halter's stunning "Deep Space Touribllon" watch. I started designing around 3D printing processes after seeing Nicholas Manousos' "Tourbillon 1000%," the first 3D printed tourbillon. After stalling for a while, I was inspired to finish it when I saw Christoph Laimer's 3D printed Tourbillon Watch, which was a big step in miniaturization. I had been unsure how to create a spring at the scale I needed, and eventually ended up using a heavily modified version of Christoph Laimer's balance wheel and spring assembly. It ended up being just the size I had already been designing around (a helpful coincidence!). I'd also like to acknowledge Mark V. Headrick's "Clock and Watch Escapement Mechanics" which was of great help in designing the escapement mechanism. FAQ Can it tell time? There are no hands for reading time, but the unit works with a counterweight that hangs below the main tourbillon. If you fully wind it and let it go, using another time-telling device you can put some marks on the string every minute (or whatever length you want to time) as it's running. These should be consistent going forward, and you can then count the marks to know the time that has passed since you started it. The timing rate is adjustable. Put in all 6 screws in the screw balance and the mechanism runs slower. Take the screws out and it runs faster (though you probably need at least 2 or it won't have the momentum to run). You can further fine tune this by screwing the screws in/out (further in is faster, further out is slower). However there are about 100 other things at that point that will mess with the timing. This is made out of printed plastic so it won't be super accurate. Are you going to sell this? Probably not. I'm just one person and selling things takes a lot of effort. But hey, if anyone out there wants to print and sell kits go right ahead! I've licensed this to be fully free even for commercial use (and so is the Cristoph Laimer model a couple parts of this are based on) so you just need to give credit when selling it.

Download Model from thingiverse

With this file you will be able to print Clockwerk - A 3D Printed, Three-Axis Tourbillon with your 3D printer. Click on the button and save the file on your computer to work, edit or customize your design. You can also find more 3D designs for printers on Clockwerk - A 3D Printed, Three-Axis Tourbillon.